Teoría de la colisión de Lewis.

La teoría de las colisiones sirve para explicar las reacciones químicas. Para que ocurra una reacción química, es preciso que los átomos, las moléculas o los iones de los reactivos entren en contacto entre sí, es decir, que choquen.


Las moléculas poseen cierta energía, esta energía debe ser lo suficientemente grande como para romper la barrera de energía llamada "energía de activación", si esta barrera se rompe, la colisiones es efectiva y se producirá la reacción entre las moleculas involucradas, por otra parte si el choque no es efectivo la reacción no se producirá, vale aclarar que cuando se llega a la "energía de activación" la reaccion se encuentra en un picode energía, y dependiendo de la estabilidad de la molecula formada la reacción puede ser exotermica (el producto de la reacción es mas estable que los reactivos separados)o endotermica (si el producto de la reaccion es mas inestable que los reactivos separados)

¿Qué son los isótopos?


Se llaman isótopos a las distintas clases de átomos que forman un elemento. Los isótopos tienen el mismo número atómico y distinto número másico. Por tanto, se diferencian en el número de netrones.

Recordemos que el número másico es el atómico más los neutrones: A = Z + netrones.

En la naturaleza existen tres isótopos del hidrógeno: El Protio, Deuterio y el Tritio. En la imagen se ve que aumenta el número de neutrones.

Número atómico y número másico.


NÚMERO ATÓMICO- Expresa la carga nuclear de un átomo, es decir, el número de protones que tiene, y es una propiedad característica del elemento al que pertenece. Se representa con la letra Z.


NÚMERO MÁSICO- Expresa la suma de protones y neutrones existentes en el nucleo de un átomo. Se representa con la letra A.

A = Z + netrones.


Estructura de zig zag de las cadenas carbonatadas.

Aunque se llaman cadenas lineales, en realidad tienen forma de zig-zag,


con ángulos próximos a 109º, debido a la estructura tetraédrica del átomo de carbono cuando sólo posee enlaces sencillos. Existe la posibilidad de rotación o giro sobre el eje de los enlaces C-C, lo que da lugar a la existencia de estados conformacionales diferentes, también llamados confórmeros.
La presencia de átomos de carbono con enlaces dobles hace que dicho ángulo sea próximo a 120º, con estructura plana e impidiendo el giro o rotación sobre el eje C=C. Es el caso de los alquenos o los ácidos grasos insaturados.
La presencia de átomos de carbono con enlaces triples C≡C hace que dicho ángulo sea próximo a 180º, con geometría lineal y tramos rectos en la molécula, como en el caso de los alquinos.


Por cierto, ¿Qué es una cadena carbonatada? Una cadena carbonada es el esqueleto de la práctica totalidad de los compuestos orgánicos y está formada por un conjunto de varios átomos de carbono, unidos entre sí mediante enlaces covalentes carbono-carbono y a la que se unen o agregan otros átomos como hidrógeno, oxígeno o nitrógeno, formando variadas estructuras, lo que origina infinidad de compuestos diferentes.
Información extraída de Wikipedia.

Formación de enlaces sencillos, dobles y triples.


Al tener cuarto electrones de valéncia, el C tiende a compartirlos para formar cuatro enlaces covalentes con otros átomos. Pueden ser:

1º- Sencillos- Enlaces sencillos para unirse a otros átomo. Los enlaces están situados los más alejados posible. El ángulo que forma con el núcleo y otro enlace corresponde a 109,5º. Se representa así:

2º- Dobles- Enlace doble en un solo plano (por eso no puede rotar) y que forma 120º con otros enlaces. Se representa de la siguiente forma:
3º- Tiple- El enlace triple forma 180º y tampoco permite rotar. Se representa así:


Configuraciones electrónicas. Bases y criterios.


Las propiedades de los elementos dependen, sobre todo, de cómo se distribuyen sus electrones en la corteza (capa valencia). Es importante saber cuantos electrones existen en el nivel más externo de un átomo pues son los que intervienen en los enlaces con otros átomos para formar compuestos.

La imagen inferior muestra la estructura electrónica de los elementos de la tabla periódica:




Niveles energéticos atómicos


En un átomo, los electrones están girando alrededor del núcleo formando capas. En cada una de ellas, la energía que posee el electrón es distinta. Por ejemplo: en las capas muy próximas al núcleo, la fuerza de atracción entre éste y los electrones es muy fuerte, por lo que estarán fuertemente ligados.

Ocurre lo contrario en las capas alejadas, en las que los electrones se encuentran débilmente ligados, por lo que resultará más fácil realizar intercambios electrónicos en las últimas capas.

¿ Cuántos niveles de energía existen?

Pues 7, numerados del 1, el más interno, al 7, el más externo. Y los niveles se llaman: K,L,M,N,O,P y Q.
A su vez, cada nivel tiene sus electrones repartidos en distintos subniveles, que pueden ser de cuatro tipos: s, p, d, f.

En cada subnivel hay un número determinado de orbitales que pueden contener, como máximo, 2 electrones cada uno. Así, hay 1 orbital tipo s, 3 orbitales p, 5 orbitales d y 7 del tipo f. De esta forma el número máximo de electrones que admite cada subnivel es: 2 en el s; 6 en el p (2 electrones x 3 orbitales); 10 en el d (2 x 5); 14 en el f (2 x 7).

El último nivel de energía se llama capa electrónica de valencia y es el más importante porque es el que usualmente define la manera en que los átomos se enlazan entre sí para formar diversos compuestos.

Estructura y diagrama de Lewis.


La Estructura o diagrama de Lewis es una representación gráfica que muestra los enlaces entre los átomos de una molécula y los pares de electrones solitarios que puedan existir.
Los pasos para dibujar el diagrama de Lewis son:

1. Determinar el número total de electrones de valencia:
- En una molécula neutra, es la suma de los electrones de valencia de los átomos que la forman.
- En un anión, hay que añadir el número de electrones correspondientes a la carga del ión.
- En un catión, hay que restar el número de electrones correspondiente a la carga del ión.

2. Colocar los átomos en sus posiciones relativas:
- En algunos casos sólo hay una ordenación posible.
- En otros es necesario recurrir a información experimental para decidir entre dos o más ordenaciones posibles. En este sentido, el átomo central suele ser el menos electronegativo.

3. Dibujar una línea que representa un enlace sencillo conteniendo dos electrones entre átomos unidos.

4. Distribuir los electrones restantes (1) como pares de electrones de no enlace en los átomos exteriores, de tal manera que cada átomo tenga ocho electrones, (el hidrógeno sólo dos), si es posible.
Si aún queda algún electrón, éste debe ser colocado en el átomo central.
Estos electrones (1) se calculan restando al número total de electrones de valencia dos electrones por cada enlace de los dibujados en la regla 3.

5. Si el átomo central está rodeado por menos de ocho electrones, hay que desplazar el número suficiente de pares de electrones de no enlace de los átomos exteriores, (a excepción de los halógenos), colocándolos entre los átomos enlazados y transformándolos en pares de electrones de enlace con objeto de que el átomo central pasa a estar rodeado de ocho electrones.

6. Asignación de cargas formales.

La carga formal de un átomo en una molécula se calcula:
Carga formal = nº electrones de valencia del átomo – [mitad del nº de electrones compartidos + nº de electrones no compartidos]


Energía de un proceso químico.

Cuando se produce una reacción química, no solo hay una transformación de una sustancia a otra, sino que también ocurre un cambio energético.

Siempre que se da una reacción química se produce un intercambio de energía entre los reactivos, los productos y el medio ambiente.

Este calor se mide en Julios según el Sistema internacional. Aunque normalmente usamos la Kilocaloría (Kcal) definida como la cantidad de calor necesaria para elevar 1ºC la temperatura de un gramo de agua.

Además, podemos igualar las dos unidades con la siguiente igualdad:

* 1Kcal - 4.184 Kj o más reducido aún * 1 cal - 4,184 julios

Antes de seguir con las reacciones endotérmicas y exotérmicas, hay que ver otro concepto: LA ENTALPIA.

La entalpía no es más que el calor que se absorbe o desprende en una reacción. Pero hay un problema, la entalpía no se puede medir directamente, por tanto, para saber cuanto es la entalpía debemos: Al calor de los productos Hp debemos restarles el calor de los reactivos Hr, y se simboliza con la diferencia de calores de las reacciones:

Ley de Hess y ecuaciones termoquímica.

La Ley de Hess dice: “si una serie de reactivos (por ej. A y B) reaccionan para dar una serie de productos (por ej. C y D), la cantidad de calor involucrado (liberado o absorbido), es siempre la misma, independientemente de si la reacción se lleva a cabo en una, dos o más etapas; siempre y cuando, las condiciones de presión y temperatura de las diferentes etapas sean las mismas”.

O sea: en toda reacción química hay ruptura y/o formación de nuevos enlaces químicos y para que haya esa ruptura y/o formación, se requiere energía, algunas veces, y otras se desprende la energía sobrante.

Como la cantidad que se involucra en la reacción es siempre la misma, se pueden relacionar con reacciones: Ecuaciones Termoquímicas.

Os pongo una explicación de cómo se deben hacer ejercicios con ecuaciones termoquímicas, está muy bien explicado:



Reacciones de combustión.

Las reacciones de combustión son reacciones exotérmicas, por tanto, son aquellas que producen calor. Un ejemplo de reacción de combustión puede ser la del metano (gas natural):

energiaquimica001

Los procesos de combustión y de oxidación tienen algo en común: la unión de una sustancia con el oxígeno. La única diferencia es la velocidad con que el proceso tiene lugar. Así, cuando el proceso de unión con el oxígeno es lo bastante lento como para que el calor desprendido durante el mismo se disipe en el ambiente sin calentar apreciablemente el cuerpo, se habla de oxidación. Si el proceso es rápido y va acompañado de un gran aumento de temperatura y en ocasiones de emisión de luz (llama), recibe el nombre de combustión.

Si quieres saber más puedes ver la Ley de Hess, enlace.

Espectros atómicos de absorción y de emisión.

Los átomo son capaces de emitir o absorber radiación electromagnética, aunque solamente en algunas frecuencias que son características propias de cada uno de los diferentes elementos químicos.

Por tanto:

Espectro de absorción, radiación electromagnética absorbida por un átomo o molécula.
Espectro de emisión, radiación electromagnética emitida por un átomo en estado gaseoso.



Los espectros de absorción y de emisión resultan ser el negativo uno del otro. Esto quiere decir, que sabiendo los espectros de absorción podemos saber los de emisión y viceversa.

Puesto que el espectro, tanto de emisión como de absorción, es característico de cada elemento, podemos identificar con un simple análisis cada uno de los elementos de la tabla periódica.


Un ejemplo: si un elemento, absorbe los colores azules, verdes, amarillos cuando se le ilumina con una luz blanca (con todos los espectros), reflejará los rojos.

Otro ejemplo: ¿Cómo crees que saben los astrónomos de qué se compone una galaxia a millones de años luz? Pues según la luz que emiten. El análisis detallado del espectro de emisión o de absorción de las estrellas, planetas y del medio interestelar permite identificar su composición química.

Partículas subatómicas. Tubos de descarga de gases.

Las partículas subatómicas.

Básicamente se intuyeron al descubrir que los átomos tenían unas cargas positivas (protón), otras negativas (electrón) y otras neutra(neutrones) . Como se descubrió que el átomo se podía dividir, se llegó a la conclusión que las divisiones eran partículas subatómicas.

En cierta manera esto corroboraba el modelo atómico de Rutherford.

Entre los experimentos que se realizaron para asegurarse de que este nuevo descubrimiento fuera acertado, el más preciso fue el Tubo de descarga de gases o el de la Lámina de oro:

Tubo de descarga de gases.

Si se introduce en un campo magnético un cátodo, dentro de un tubo hermético donde se introduce un gas enrarecido, la luz de los rayos catódicos se dirigía hacia la placa positiva del campo magnético, por lo que se comprobó que se comportaban como una corriente eléctrica de carga negativa.
A partir del descubrimiento de los rayos catódicos J.J. Thomson llegó a la conclusión de que las partículas de los rayos catódicos debían de ser partículas constituyentes fundamentales de toda la materia.

Lámina de oro.

Este experimento consistió en mandar un haz de partículas alfa sobre una fina lámina de oro y observar cómo dicha lámina afectaba a la trayectoria de dichos rayos. Gran parte de las partículas lanzadas atravesaban la lámina de oro.

Rutherford concluyó que el hecho de que la mayoría de las partículas atravesaran la hoja metálica, indica que gran parte del átomo está vacío, que la desviación de las partículas alfa indica que el deflector y las partículas poseen carga positiva, pues la desviación siempre es dispersa. Y el rebote de las partículas alfa indica un encuentro directo con una zona fuertemente positiva del átomo y a la vez muy densa.



Diagrama de Lewis.



Es una representación gráfica que muestra los enlaces entre los átomos de una molécula y los pares de electrones solitarios que puedan existir. El diagrama de Lewis se puede usar tanto para representar moléculas formadas por la unión de sus átomos mediante enlace covalente como complejos de coordinación. Y esta representación... ¿Cómo se hace?

1. Elegir el átomo central, que será generalmente el menos electronegativo, exceptuando el H (y generalmente el F) que siempre son terminales porque solo pueden formar un enlace. En los compuestos orgánicos siempre es el C (excepto en los éteres).

2. Alrededor del átomo central se sitúan los demás (ligandos) de la forma más simétrica posible. En los oxácidos, generalmente el H se une al O. (En CO y NO, C y N son centrales).


3. Calcular el número total de electrones de valencia de todos los átomos, añadiendo la carga neta si la hay (ejemplos: si la carga neta es -2, añadir dos electrones; si la carga neta es +1, restar un electrón). Tendremos así el número total de electrones para asignar a enlaces y átomos.

4. Dibujar un enlace entre cada par de átomos conectados, asignando a cada enlace un par de electrones que se irán restando del total.

5. Comenzando por los ligandos y terminando en el átomo central, asignar los electrones restantes, en forma de pares, a cada átomo hasta cerrar capa. El H cierra con 2. En general los átomos centrales del 2º período cierran con 8 electrones, excepto Be con 4 y B con 6. Si hay algún electrón desapareado éste se representa por un solo punto, que se situará lógicamente en el átomo central (en este caso la molécula tiene momento magnético y es paramagnética).


6. Calcular la carga formal de cada átomo comenzando por el central. La carga formal es la carga hipotética que tiene cada átomo en la estructura de Lewis y se obtiene por diferencia entre los electrones de valencia del átomo libre y los asignados en la estructura a dicho átomo, es decir:

qf= nº e-valencia – (nº e-no enlazantes + nº enlaces)

7. Si la carga formal del átomo central es igual a la carga neta de la molécula o si es negativa, entonces la estructura es correcta y se termina aquí el proceso.

8. En caso contrario, modificar la estructura formando un doble enlace entorno al átomo central
desplazando un par no enlazante del ligando negativo al átomo central, lo que cancela un par de cargas formales, una negativa y otra positiva.


Con este ejemplo lo entenderás mejor.


Radiación electromagnética: parámetros característicos.

Las ondas de radio, las microondas, la luz infrarroja, visible y ultravioleta, los rayos X y los rayos gamma son ejemplos de radiaciones electromagnéticas. ¿Pero que son estas radiaciones?, Pues un tipo de radiación en forma de onda que se caracteriza por poseer dos campos: Un campo eléctrico y otro campo magnético, oscilando perpendicularente entre sí.

En la imagen de abajo vereis que el campo eléctrico y el magnético se desplazan por el eje "x", pero el eléctrico oscila por el eje "y" y en cambio, el campo magnético por el eje "z".
Lo que debemos saber de estas ondas:

Ciclo: Se denomina ciclo a cada patrón repetitivo de una onda.

Período: Es el tiempo que tarda la onda en completar un ciclo.

Frecuencia: Número de ciclos que completa la onda en un intervalo de tiempo. Si dicho intervalo es de un segundo, la unidad de frecuencia es el Hertz (Hz). Otras unidades de frecuencias muy utilizadas (en otros ámbitos) son las "revoluciones por minuto" (RPM) y los "radianes por segundo" (rad/s).

El período y la frecuencia están relacionados de la siguiente manera:

Amplitud: Es la medida de la magnitud de la máxima perturbación del medio producida por la onda.

Longitud: La longitud de una onda viene determinada por la distancia entre los puntos inicial y final de un ciclo (por ejemplo, entre un valle de la onda y el siguiente). Habitualmente se denota con la letra griega lambda.

Un factor importante a tener en cuenta es que el tamaño y diseño de las antenas está fuertemente influenciado por la longitud de onda. Por ejemplo, una antena dipolo sencilla debe tener una longitud lambda/2 para que sintonice de manera óptima las ondas de longitud lambda.

Los conceptos anteriores están representados en la siguiente figura tomada de la Wikipedia:

Figura 2-2. Propiedades de una onda

Velocidad: Las ondas se desplazan a una velocidad que depende de la naturaleza de la onda y del medio por el cual se mueven. En el caso de la luz, por ejemplo, la velocidad en el vacío se denota "c" y vale 299.792.458 m/s (aproximadamente 3.10^8 m/s).

Los conceptos de velocidad, longitud y frecuencia están interrelacionados. Para el caso de las ondas electromagnéticas (de las cuales la luz es un ejemplo), la relación es:

Fase: La fase de una onda relaciona la posición de una característica específica del ciclo (como por ejemplo un pico), con la posición de la misma característica en otra onda. Puede medirse en unidades de tiempo, distancia, fracción de la longitud de onda o (más comúnmente) como un ángulo.

Ahora puedes ver esta presentación para entender mejor las ondas y sus características.

View more presentations from pookyloly
Información extraída (cursiva) de http://nacc.upc.es/

Hidrocarburos aromáticos. Estructura del Benceno.


Los hidrocarburos aromáticos son derivados del benceno, bien por sustitución de algún
átomo de hidrógeno del núcleo bencénico por radicales alquílicos, o bien por condensación del núcleo bencénico. Ejemplo:


Los dobles enlaces se colocan alternos, es decir, uno sencillo y uno doble.
Nomenclatura (Con radicales de menos de cuatro carbonos):
Con un radical: Cuando hay un único sustituyente sobre el anillo bencénico, el nombre de aquel se antepone a la palabra benceno. Ejemplos:


Con dos radicales: Si existen dos sustituyentes, deben indicarse las posiciones de
estos con los números (1,2), (1,3) ó (1,4), ó los prefijos orto- (o-), meta- (m-) o para- (p-), respectivamente. Si los radicales son distintos se nombran por orden alfabético, y si son iguales, mediante los prefijos di-, tri-… Ejemplos:


Más de dos radicales: En el caso de que haya más de dos sustituyentes, estos recibirán los números localizadores más bajos y se nombrarán por orden alfabético.
Ejemplo:

A igualdad de número localizador, se empieza a numerar por el primer radical, por orden alfabético. Ejemplos:


El radical del benceno se denomina fenilo. Ejemplos:
Con cadenas lineales de 4 ó más carbonos el benceno se nombra como radical (fenil). Ejemplos:



Recordemos, que siempre y cuando el benceno actúe como radical, es decir, no tenga
más sustituyentes, prevalece el nombre de la cadena lineal si tiene 4 carbonos o más, en caso contrario se nombra como radical del benceno

Ejercicios de formulación orgánica.

Ejercicios de ion Organica

Ejercicios de formulación orgánica.

Ejercicios de ion Organica

SISTEMA PERIÓDICO Y FAMILIAS O GRUPOS.




GRUPOS DEL SISTEMA PERIÓDICO.

Grupo 1. Metales alcalinos. Litio (Li), sodio (Na), potasio (K), rubidio (Rb), cesio (Cs) y francio (Fr).

Grupo 2. Metales alcalinotérreos. Berilio (Be), magnesio (Mg), calcio (Ca), estroncio (Sr), bario (Ba) y radio (Ra).

Grupo 13. Familia del boro o boroideos. Boro (B), aluminio (Al), galio (Ga), indio (In) y talio (Tl).

Grupo 14. Familia del carbono o carbonoideos. Carbono (C), silicio (Si), germanio (Ge), estaño (Sn) y plomo (Pb).

Grupo 15. Familia del nitrógeno o nitrogenoideos. Nitrógeno (N), fósforo (P), arsénico (As), antimonio (Sb) y bismuto (Bi).

Grupo 16. Familia del oxígeno o anfígenos. Oxígeno (O), azufre (S), selenio (Se), teluro (Te) y polonio (Po).

Grupo 17. Halógenos. Flúor (F), cloro (Cl), bromo (Br), yodo (I) y astato (At).

Grupo 18. Gases nobles. Helio (He), neón (Ne), argón (Ar), criptón (Kr), xenón (Xe) y radón (Rn).

Del 3 al 12. Elementos de transición. Algunos ejemplos: cromo (Cr), hierro (Fe), níquel (Ni), cobre (Cu), cinc (Zn), plata (Ag), platino (Pt), oro (Au) y mercurio (Hg).

Un «problema» sin solución, aunque no tiene especial relevancia, es la posición del hidrógeno (H). Hay químicos que lo consideran dentro del grupo 1, metales alcalinos. Otros dicen que podría situarse en el grupo 17, con los

Hipótesis de Planck.

Max Karl Ernest Ludwig Planck fue un físico alemán considerado como el fundador de la teoría cuántica.

En 1889, descubrió una constante fundamental, la denominada Constante de Planck, usada para calcular la energía de un fotón. Planck establece que la energía se radia en unidades pequeñas denominadas cuantos. La ley de Planck relaciona que la energía de cada cuanto es igual a la frecuencia de la radiación multiplicada por la Constante de Planck. Un año después descubrió la ley de radiación del calor, denominada Ley de Planck, que explica el espectro de emisión de un cuerpo negro. Esta ley se convirtió en una de las bases de la teoría cuántica, que emergió unos años más tarde con la colaboración de Albert Einstein y Niels Böhr.

Lo que postuló Planck al introducir su ley es que la única manera de obtener una fórmula experimentalmente correcta exigía la novedosa y atrevida suposición de que dicho intercambio de energía debía suceder de una manera discontinua, es decir, a través de la emisión y absorción de cantidades discretas de energía, que hoy denominamos “quantums” de radiación.


RESUMIENDO:

Según Planck, la energía emitida o captada por un cuerpo en forma de radiación electromagnética es siempre un múltiplo de la constante h, llamada posteriormente constante de Planck por la frecuencia v de la radiación.

e =nhv

h=6,62 10-34 J·s, constante de Planck

v=frecuencia de la radiación

A hv le llamó cuanto de energía. Que un cuanto sea más energético que otro dependerá de su frecuencia.

Características del carbono y su combinación.

El átomo de carbono posee unas propiedades química muy particulares, las cuales lo han hecho el elemento base de la vida en nuestro planeta, (vídeo resumen).


Entre sus características más importantes están:

1º Características según la tabla periodica:

El carbono es el elemento número 6 de la tabla periódica (Z=6 y A=12) y el primer elemento del Grupo IV. Su estructura electrónica es 1s2 2s2 2p2.
El átomo de carbono tiene 4 electrones en la última capa. Esto hace que pueda unirse a otros átomos mediante cuatro enlaces covalentes.

Número atómico 6
Valencia 2,+4,-4

Configuración electrónica 1s22s22p2

Masa atómica (g/mol) 12,01115

Densidad (g/ml) 2,26

Punto de ebullición (ºC) 4830

Punto de fusión (ºC) 3727

2º Características por su importancia:

Al poder combinar de varias formas, el carbono es un elemento ideal para elaborar los complejos sistemas orgánicos como nuestras células o las hojas de las plantas. Siendo el número de combinación entre átomos de carbonos y otros diferentes es casi infinito.

Con el oxígeno forma dos compuestos gaseosos importantes: monóxido de carbono (CO), y dióxido de carbono (CO2).


LA COMBINACIÓN DEL CARBONO.

El carbono presenta una importante capacidad de combinación con otros átomos ya que puede formar hasta cuatro enlaces con otros átomos.

Estos enlaces forman un tetradrón (una pirámide con una punta en la parte superior).

La diversidad de los productos químicos orgánicos se debe a la infinidad de opciones que brinda el carbono para enlazarse con otros átomos. Los químicos orgánicos más simples, llamados hidrocarburos, contienen sólo carbono y átomos de hidrógeno; el hidrocarburo más simple (llamado metano) contiene un solo átomo de carbono enlazado a cuatro átomos de hidrógeno


Pero el carbono también puede enlazarse con otros átomos de carbono adicionalmente al hidrógeno tal como se ilustra en el siguiente dibujo de la molécula etano

Fuerzas intermoleculares.

Las fuerzas intermoleculares (fuerzas de atracción entre moléculas o enlaces intermoleculares)son consideradas más débiles que otros enlaces. Son fuerzas de atracción y repulsión entre las moléculas dependiendo en gran medida del equilibrio (o falta de él) de las fuerzas que unen o separan las moléculas.

*En términos relativos, si se da el valor 1 a la fuerza de unión de Van der Waals:


V. der Waals............1

P de Hidrógeno.......10

Enlace covalente.... 100

Las fuerzas de atracción explican la cohesión de las moléculas en los estados liquido y sólido de la materia, y se llaman fuerzas de largo alcance o Fuerzas de Van der Waals en honor al físico holandés Johannes van der Waals. Estas fuerzas son las responsables de muchos fenómenos físicos y químicos como la adhesión, rozamiento, difusión, tensión superficial y la viscosidad.
Entre las diferentes fuerzas de orden intermoleculares que mantienen unidos los átomos dentro de la molécula y ayudan a mantener la estabilidad de las moléculas individuales, las más conocidas son las siguientes:

1º- ENLACE O PUENTE DE HIDRÓGENO.

2º- FUERZAS DE VAN DER WAALS.

2.1º- DIPOLO-DIPOLO. Una atracción dipolo-dipolo es una interacción no covalente entre dos moléculas polares. Las moléculas que son dipolos se atraen entre sí cuando la región positiva de una está cerca de la región negativa de la otra. Podríamos decir que es similar al enlace ionico pero más débil.

2.2º- INTERACCIONES IONICAS.Son interacciones que ocurren a nivel de catión-anión, entre distintas moléculas cargadas, y que por lo mismo tenderán a formar una unión electrostática entre los extremos de cargas opuestas debido a la atracción entre ellas

.2.3º- FUERZAS DE LONDON O DISPERSIÓN.
Las fuerzas de London se presentan en todas las sustancias moleculares. Son el resultado de la atracción entre los extremos positivo y negativo de dipolos inducidos en moléculas adyacentes.En general, cuantos más electrones haya en una molécula más fácilmente podrá polarizarse. Así, las moléculas más grandes con muchos electrones son relativamente polarizables. En contraste, las moléculas más pequeñas son menos polarizables porque tienen menos electrones

Regla del Octeto.

La Regla del Octeto dice lo siguiente: la tendencia de los átomos de los elementos es (perdiendo, ganando o compartiendo electrones) a completar sus últimos niveles de energía con una cantidad de 8 electrones de forma tal que adquiere una configuración muy estable.

Estas propiedades dependerán por tanto del tipo de enlace (covalente, ionico, metálico, y enlaces intermoleculares) del número de enlaces por átomo, y de las fuerzas intermoleculares.


Puedes ver este vídeo para entenderlo mejor.


Lewis postuló que todos los átomos al combinarse, buscan alcanzar la estructura del gas noble más cercano a ellos en la tabla periódica.

Como puedes observar en tu tabla periódica, los gases nobles o inertes (grupo VIII) tienen 8 electrones en su ultima capa y se les llama inertes porque no se combinan con otras sustancias, no forman compuestos.

Lewis dedujo que esto último se debía a que la configuración de 8 electrones en la ultima capa de energía era la más estable para cualquier átomo.

Existen excepciones a esta regla. Los átomos que no cumplen la regla del octeto en algunos compuestos son: Carbono, Nitrógeno, Oxigeno y Azufre. En algunos casos estos elementos forman dobles enlaces y hasta triples el Carbono y el Nitrógeno.


Si quieres saber más: La regla del octeto, enunciada en 1917 por Gilbert Newton Lewis... (Wiki)

Oxidación reducción. Redox. Medio básico.

Medio básico

En medio básico se agregan iones hidróxilo (aniones) (OH) y agua (H2O) a las semirreacciones para balancear la ecuación final.

Por ejemplo, tenemos la reacción entre el Permanganato de Potasio y el Sulfito de Sodio.

Ecuación sin balancear:

KMnO_4 + Na_2SO_3 + H_2O \to MnO_2 + Na_2SO_4 + KOH \,\!

Separamos las semirreacciones en

Oxidación: SO_3^{-2} \to SO_4^{-2} + 2e^-
Reducción: 3e^- + MnO_4^- \to MnO_2

Agregamos la cantidad adecuada de Hidróxidos y Agua (las moléculas de agua se sitúan en donde hay mayor cantidad de oxígenos).

Oxidación: \color{BlueViolet}2OH^-\color{Black} + SO_3^{-2} \to SO_4^{-2} + \color{BlueViolet}H_2O\color{Black} + 2e-
Reducción: 3e^- + \color{BlueViolet}2H_2O\color{Black} + MnO_4^- \to MnO_2 + \color{BlueViolet}4OH^-\color{Black}

Balanceamos la cantidad de electrones al igual que en el ejemplo anterior.

Oxidación: ( 2OH^- + SO_3^{-2} \to SO_4^{-2} + H_2O + \color{OliveGreen}2 e^-\color{Black} ) \; \color{Orange}\times 3\color{Black}
Reducción: ( \color{Orange}3 e^-\color{Black} + 2H_2O + MnO_4^- \to MnO_2 + 4OH^- ) \; \color{OliveGreen}\times 2\color{Black}

Obtenemos:

Oxidación: 6OH^- + 3SO_3^{-2} \to 3SO_4^{-2} + 3H_2O + 6e^-
Reducción: 6e^- + 4H_2O + 2MnO_4^- \to 2MnO_2 + 8OH^-

Como se puede ver, los electrones están balanceados, así que procedemos a sumar las dos semirreacciones, para obtener finalmente la ecuación balanceada.

 \underline{    \left .    \begin{array}{rcl}       6OH^- + 3SO_3^{-2} \to 3SO_4^{-2} + 3H_2O + 6e^-  \\       6e^- + 4H_2O + 2MnO_4^- \to 2MnO_2 + 8OH^-    \end{array}    \right \Downarrow + }
2KMnO_4 + 3Na_2SO_3 + H_2O \to 2MnO_2 + 3Na_2SO_4 + 2KOH \,\!.


Fuente Wikipedia.

Oxidación reducción. Redox. Medio ácido.

Medio ácido

En medio ácido se agregan hidronios (cationes) (H+) y agua (H2O) a las semirreacciones para balancear la ecuación final.

Del lado de la ecuación que haga falta oxígeno se agregarán moléculas de agua, y del lado de la ecuación que hagan falta hidrógenos se agregarán hidronios.

Por ejemplo, cuando el Manganeso (II) reacciona con el Bismutato de Sodio.

Ecuación sin balancear:

 Mn^{+2}_{(aq)} + NaBiO_{3(s)} \to Bi^{+3}_{(aq)} + MnO^{-}_{4(aq)}
Oxidación :Mn^{+2}_{(aq)} \to MnO^{-}_{4(aq)} + 5 e^-
Reducción :2e^- + BiO^{-}_{3(s)} \to Bi^{3+}_{(aq)}

Ahora tenemos que agregar los hidronios y las moléculas de agua donde haga falta hidrógenos y donde haga falta oxígenos, respectivamente.

Oxidación: \color{BlueViolet}4H_2O\color{Black} + Mn^{+2}_{(aq)} \to MnO^{-}_{4(aq)} + \color{BlueViolet}8 H^{+}_{(aq)} \color{Black} + 5 e^-
Reducción: 2e^- + \color{BlueViolet}6H^+\color{Black} + BiO^{-}_{3(s)} \to Bi^{3+}_{(aq)} + \color{BlueViolet}3H_2O\color{Black}

Las reacciones se balancearán al momento de igualar la cantidad de electrones que intervienen en ambas semirreacciones. Esto se logrará multiplicando la reacción de una semirreación por el número de electrones de la otra semirreacción (y, de ser necesario, viceversa), de modo que la cantidad de electrones sea constante.

Oxidación: ( 4H_2O + Mn^{+2}_{(aq)} \to MnO^{-}_{4(aq)} + 8 H^{+}_{(aq)} + \color{OliveGreen}5 e^-\color{Black} ) \color{Orange}\times 2\color{Black}
Reducción: ( \color{Orange}2e^-\color{Black} + 6H^+ + BiO^{-}_{3(s)} \to Bi^{3+}_{(aq)} + 3H_2O ) \color{OliveGreen}\times 5\color{Black}

Al final tendremos:

Oxidación: 8H_2O + 2Mn^{+2}_{(aq)} \to 2MnO^{-}_{4(aq)} + 16 H^{+}_{(aq)} + 10 e^-
Reducción: 10e^- + 30H^+ + 5BiO^{-}_{3(s)} \to 5Bi^{3+}_{(aq)} + 15H_2O

Como se puede ver, los electrones están balanceados, así que procedemos a sumar las dos semirreacciones, para obtener finalmente la ecuación balanceada.

 \underline{    \left .    \begin{array}{rcl}       8H_2O + 2Mn^{+2}_{(aq)} \to 2MnO^{-}_{4(aq)} + 16 H^{+}_{(aq)} + 10 e^- \\        10e^- + 30H^+ + 5BiO^{-}_{3(s)} \to 5Bi^{3+}_{(aq)} + 15H_2O     \end{array}    \right \Downarrow + }
14H^+_{(aq)} + 2Mn^{+2}_{(aq)} + 5NaBiO_{3(s)} \to 7H_2O + 2MnO^{-}_{4(aq)} + 5Bi^{3+}_{(aq)} + 5 Na^+_{(aq)}.


Fuente: Wikipedia.