martes, 15 de noviembre de 2011

Estructura de zig zag de las cadenas carbonatadas.

Aunque se llaman cadenas lineales, en realidad tienen forma de zig-zag,


con ángulos próximos a 109º, debido a la estructura tetraédrica del átomo de carbono cuando sólo posee enlaces sencillos. Existe la posibilidad de rotación o giro sobre el eje de los enlaces C-C, lo que da lugar a la existencia de estados conformacionales diferentes, también llamados confórmeros.
La presencia de átomos de carbono con enlaces dobles hace que dicho ángulo sea próximo a 120º, con estructura plana e impidiendo el giro o rotación sobre el eje C=C. Es el caso de los alquenos o los ácidos grasos insaturados.
La presencia de átomos de carbono con enlaces triples C≡C hace que dicho ángulo sea próximo a 180º, con geometría lineal y tramos rectos en la molécula, como en el caso de los alquinos.


Por cierto, ¿Qué es una cadena carbonatada? Una cadena carbonada es el esqueleto de la práctica totalidad de los compuestos orgánicos y está formada por un conjunto de varios átomos de carbono, unidos entre sí mediante enlaces covalentes carbono-carbono y a la que se unen o agregan otros átomos como hidrógeno, oxígeno o nitrógeno, formando variadas estructuras, lo que origina infinidad de compuestos diferentes.
Información extraída de Wikipedia.

Formación de enlaces sencillos, dobles y triples.


Al tener cuarto electrones de valéncia, el C tiende a compartirlos para formar cuatro enlaces covalentes con otros átomos. Pueden ser:

1º- Sencillos- Enlaces sencillos para unirse a otros átomo. Los enlaces están situados los más alejados posible. El ángulo que forma con el núcleo y otro enlace corresponde a 109,5º. Se representa así:

2º- Dobles- Enlace doble en un solo plano (por eso no puede rotar) y que forma 120º con otros enlaces. Se representa de la siguiente forma:
3º- Tiple- El enlace triple forma 180º y tampoco permite rotar. Se representa así:


martes, 1 de noviembre de 2011

Configuraciones electrónicas. Bases y criterios.


Las propiedades de los elementos dependen, sobre todo, de cómo se distribuyen sus electrones en la corteza (capa valencia). Es importante saber cuantos electrones existen en el nivel más externo de un átomo pues son los que intervienen en los enlaces con otros átomos para formar compuestos.

La imagen inferior muestra la estructura electrónica de los elementos de la tabla periódica:




lunes, 17 de octubre de 2011

Niveles energéticos atómicos


En un átomo, los electrones están girando alrededor del núcleo formando capas. En cada una de ellas, la energía que posee el electrón es distinta. Por ejemplo: en las capas muy próximas al núcleo, la fuerza de atracción entre éste y los electrones es muy fuerte, por lo que estarán fuertemente ligados.

Ocurre lo contrario en las capas alejadas, en las que los electrones se encuentran débilmente ligados, por lo que resultará más fácil realizar intercambios electrónicos en las últimas capas.

¿ Cuántos niveles de energía existen?

Pues 7, numerados del 1, el más interno, al 7, el más externo. Y los niveles se llaman: K,L,M,N,O,P y Q.
A su vez, cada nivel tiene sus electrones repartidos en distintos subniveles, que pueden ser de cuatro tipos: s, p, d, f.

En cada subnivel hay un número determinado de orbitales que pueden contener, como máximo, 2 electrones cada uno. Así, hay 1 orbital tipo s, 3 orbitales p, 5 orbitales d y 7 del tipo f. De esta forma el número máximo de electrones que admite cada subnivel es: 2 en el s; 6 en el p (2 electrones x 3 orbitales); 10 en el d (2 x 5); 14 en el f (2 x 7).

El último nivel de energía se llama capa electrónica de valencia y es el más importante porque es el que usualmente define la manera en que los átomos se enlazan entre sí para formar diversos compuestos.

domingo, 9 de octubre de 2011

Estructura y diagrama de Lewis.


La Estructura o diagrama de Lewis es una representación gráfica que muestra los enlaces entre los átomos de una molécula y los pares de electrones solitarios que puedan existir.
Los pasos para dibujar el diagrama de Lewis son:

1. Determinar el número total de electrones de valencia:
- En una molécula neutra, es la suma de los electrones de valencia de los átomos que la forman.
- En un anión, hay que añadir el número de electrones correspondientes a la carga del ión.
- En un catión, hay que restar el número de electrones correspondiente a la carga del ión.

2. Colocar los átomos en sus posiciones relativas:
- En algunos casos sólo hay una ordenación posible.
- En otros es necesario recurrir a información experimental para decidir entre dos o más ordenaciones posibles. En este sentido, el átomo central suele ser el menos electronegativo.

3. Dibujar una línea que representa un enlace sencillo conteniendo dos electrones entre átomos unidos.

4. Distribuir los electrones restantes (1) como pares de electrones de no enlace en los átomos exteriores, de tal manera que cada átomo tenga ocho electrones, (el hidrógeno sólo dos), si es posible.
Si aún queda algún electrón, éste debe ser colocado en el átomo central.
Estos electrones (1) se calculan restando al número total de electrones de valencia dos electrones por cada enlace de los dibujados en la regla 3.

5. Si el átomo central está rodeado por menos de ocho electrones, hay que desplazar el número suficiente de pares de electrones de no enlace de los átomos exteriores, (a excepción de los halógenos), colocándolos entre los átomos enlazados y transformándolos en pares de electrones de enlace con objeto de que el átomo central pasa a estar rodeado de ocho electrones.

6. Asignación de cargas formales.

La carga formal de un átomo en una molécula se calcula:
Carga formal = nº electrones de valencia del átomo – [mitad del nº de electrones compartidos + nº de electrones no compartidos]


miércoles, 28 de septiembre de 2011

Energía de un proceso químico.

Cuando se produce una reacción química, no solo hay una transformación de una sustancia a otra, sino que también ocurre un cambio energético.

Siempre que se da una reacción química se produce un intercambio de energía entre los reactivos, los productos y el medio ambiente.

Este calor se mide en Julios según el Sistema internacional. Aunque normalmente usamos la Kilocaloría (Kcal) definida como la cantidad de calor necesaria para elevar 1ºC la temperatura de un gramo de agua.

Además, podemos igualar las dos unidades con la siguiente igualdad:

* 1Kcal - 4.184 Kj o más reducido aún * 1 cal - 4,184 julios

Antes de seguir con las reacciones endotérmicas y exotérmicas, hay que ver otro concepto: LA ENTALPIA.

La entalpía no es más que el calor que se absorbe o desprende en una reacción. Pero hay un problema, la entalpía no se puede medir directamente, por tanto, para saber cuanto es la entalpía debemos: Al calor de los productos Hp debemos restarles el calor de los reactivos Hr, y se simboliza con la diferencia de calores de las reacciones:

martes, 27 de septiembre de 2011

Ley de Hess y ecuaciones termoquímica.

La Ley de Hess dice: “si una serie de reactivos (por ej. A y B) reaccionan para dar una serie de productos (por ej. C y D), la cantidad de calor involucrado (liberado o absorbido), es siempre la misma, independientemente de si la reacción se lleva a cabo en una, dos o más etapas; siempre y cuando, las condiciones de presión y temperatura de las diferentes etapas sean las mismas”.

O sea: en toda reacción química hay ruptura y/o formación de nuevos enlaces químicos y para que haya esa ruptura y/o formación, se requiere energía, algunas veces, y otras se desprende la energía sobrante.

Como la cantidad que se involucra en la reacción es siempre la misma, se pueden relacionar con reacciones: Ecuaciones Termoquímicas.

Os pongo una explicación de cómo se deben hacer ejercicios con ecuaciones termoquímicas, está muy bien explicado:



FORMAS DE REPRESENTAR MOLÉCULAS ORGÁNICAS.

En la química del carbono, es fácil encontrar diversos compuestos diferentes con la misma fórmula molecular. Para diferenciarlos, debemos s...