jueves, 18 de agosto de 2011

Diagrama de Lewis.



Es una representación gráfica que muestra los enlaces entre los átomos de una molécula y los pares de electrones solitarios que puedan existir. El diagrama de Lewis se puede usar tanto para representar moléculas formadas por la unión de sus átomos mediante enlace covalente como complejos de coordinación. Y esta representación... ¿Cómo se hace?

1. Elegir el átomo central, que será generalmente el menos electronegativo, exceptuando el H (y generalmente el F) que siempre son terminales porque solo pueden formar un enlace. En los compuestos orgánicos siempre es el C (excepto en los éteres).

2. Alrededor del átomo central se sitúan los demás (ligandos) de la forma más simétrica posible. En los oxácidos, generalmente el H se une al O. (En CO y NO, C y N son centrales).


3. Calcular el número total de electrones de valencia de todos los átomos, añadiendo la carga neta si la hay (ejemplos: si la carga neta es -2, añadir dos electrones; si la carga neta es +1, restar un electrón). Tendremos así el número total de electrones para asignar a enlaces y átomos.

4. Dibujar un enlace entre cada par de átomos conectados, asignando a cada enlace un par de electrones que se irán restando del total.

5. Comenzando por los ligandos y terminando en el átomo central, asignar los electrones restantes, en forma de pares, a cada átomo hasta cerrar capa. El H cierra con 2. En general los átomos centrales del 2º período cierran con 8 electrones, excepto Be con 4 y B con 6. Si hay algún electrón desapareado éste se representa por un solo punto, que se situará lógicamente en el átomo central (en este caso la molécula tiene momento magnético y es paramagnética).


6. Calcular la carga formal de cada átomo comenzando por el central. La carga formal es la carga hipotética que tiene cada átomo en la estructura de Lewis y se obtiene por diferencia entre los electrones de valencia del átomo libre y los asignados en la estructura a dicho átomo, es decir:

qf= nº e-valencia – (nº e-no enlazantes + nº enlaces)

7. Si la carga formal del átomo central es igual a la carga neta de la molécula o si es negativa, entonces la estructura es correcta y se termina aquí el proceso.

8. En caso contrario, modificar la estructura formando un doble enlace entorno al átomo central
desplazando un par no enlazante del ligando negativo al átomo central, lo que cancela un par de cargas formales, una negativa y otra positiva.


Con este ejemplo lo entenderás mejor.


lunes, 1 de agosto de 2011

Radiación electromagnética: parámetros característicos.

Las ondas de radio, las microondas, la luz infrarroja, visible y ultravioleta, los rayos X y los rayos gamma son ejemplos de radiaciones electromagnéticas. ¿Pero que son estas radiaciones?, Pues un tipo de radiación en forma de onda que se caracteriza por poseer dos campos: Un campo eléctrico y otro campo magnético, oscilando perpendicularente entre sí.

En la imagen de abajo vereis que el campo eléctrico y el magnético se desplazan por el eje "x", pero el eléctrico oscila por el eje "y" y en cambio, el campo magnético por el eje "z".
Lo que debemos saber de estas ondas:

Ciclo: Se denomina ciclo a cada patrón repetitivo de una onda.

Período: Es el tiempo que tarda la onda en completar un ciclo.

Frecuencia: Número de ciclos que completa la onda en un intervalo de tiempo. Si dicho intervalo es de un segundo, la unidad de frecuencia es el Hertz (Hz). Otras unidades de frecuencias muy utilizadas (en otros ámbitos) son las "revoluciones por minuto" (RPM) y los "radianes por segundo" (rad/s).

El período y la frecuencia están relacionados de la siguiente manera:

Amplitud: Es la medida de la magnitud de la máxima perturbación del medio producida por la onda.

Longitud: La longitud de una onda viene determinada por la distancia entre los puntos inicial y final de un ciclo (por ejemplo, entre un valle de la onda y el siguiente). Habitualmente se denota con la letra griega lambda.

Un factor importante a tener en cuenta es que el tamaño y diseño de las antenas está fuertemente influenciado por la longitud de onda. Por ejemplo, una antena dipolo sencilla debe tener una longitud lambda/2 para que sintonice de manera óptima las ondas de longitud lambda.

Los conceptos anteriores están representados en la siguiente figura tomada de la Wikipedia:

Figura 2-2. Propiedades de una onda

Velocidad: Las ondas se desplazan a una velocidad que depende de la naturaleza de la onda y del medio por el cual se mueven. En el caso de la luz, por ejemplo, la velocidad en el vacío se denota "c" y vale 299.792.458 m/s (aproximadamente 3.10^8 m/s).

Los conceptos de velocidad, longitud y frecuencia están interrelacionados. Para el caso de las ondas electromagnéticas (de las cuales la luz es un ejemplo), la relación es:

Fase: La fase de una onda relaciona la posición de una característica específica del ciclo (como por ejemplo un pico), con la posición de la misma característica en otra onda. Puede medirse en unidades de tiempo, distancia, fracción de la longitud de onda o (más comúnmente) como un ángulo.

Ahora puedes ver esta presentación para entender mejor las ondas y sus características.

View more presentations from pookyloly
Información extraída (cursiva) de http://nacc.upc.es/

miércoles, 27 de julio de 2011

Hidrocarburos aromáticos. Estructura del Benceno.


Los hidrocarburos aromáticos son derivados del benceno, bien por sustitución de algún
átomo de hidrógeno del núcleo bencénico por radicales alquílicos, o bien por condensación del núcleo bencénico. Ejemplo:


Los dobles enlaces se colocan alternos, es decir, uno sencillo y uno doble.
Nomenclatura (Con radicales de menos de cuatro carbonos):
Con un radical: Cuando hay un único sustituyente sobre el anillo bencénico, el nombre de aquel se antepone a la palabra benceno. Ejemplos:


Con dos radicales: Si existen dos sustituyentes, deben indicarse las posiciones de
estos con los números (1,2), (1,3) ó (1,4), ó los prefijos orto- (o-), meta- (m-) o para- (p-), respectivamente. Si los radicales son distintos se nombran por orden alfabético, y si son iguales, mediante los prefijos di-, tri-… Ejemplos:


Más de dos radicales: En el caso de que haya más de dos sustituyentes, estos recibirán los números localizadores más bajos y se nombrarán por orden alfabético.
Ejemplo:

A igualdad de número localizador, se empieza a numerar por el primer radical, por orden alfabético. Ejemplos:


El radical del benceno se denomina fenilo. Ejemplos:
Con cadenas lineales de 4 ó más carbonos el benceno se nombra como radical (fenil). Ejemplos:



Recordemos, que siempre y cuando el benceno actúe como radical, es decir, no tenga
más sustituyentes, prevalece el nombre de la cadena lineal si tiene 4 carbonos o más, en caso contrario se nombra como radical del benceno

Ejercicios de formulación orgánica.

Ejercicios de ion Organica

Ejercicios de formulación orgánica.

Ejercicios de ion Organica

martes, 12 de julio de 2011

SISTEMA PERIÓDICO Y FAMILIAS O GRUPOS.




GRUPOS DEL SISTEMA PERIÓDICO.

Grupo 1. Metales alcalinos. Litio (Li), sodio (Na), potasio (K), rubidio (Rb), cesio (Cs) y francio (Fr).

Grupo 2. Metales alcalinotérreos. Berilio (Be), magnesio (Mg), calcio (Ca), estroncio (Sr), bario (Ba) y radio (Ra).

Grupo 13. Familia del boro o boroideos. Boro (B), aluminio (Al), galio (Ga), indio (In) y talio (Tl).

Grupo 14. Familia del carbono o carbonoideos. Carbono (C), silicio (Si), germanio (Ge), estaño (Sn) y plomo (Pb).

Grupo 15. Familia del nitrógeno o nitrogenoideos. Nitrógeno (N), fósforo (P), arsénico (As), antimonio (Sb) y bismuto (Bi).

Grupo 16. Familia del oxígeno o anfígenos. Oxígeno (O), azufre (S), selenio (Se), teluro (Te) y polonio (Po).

Grupo 17. Halógenos. Flúor (F), cloro (Cl), bromo (Br), yodo (I) y astato (At).

Grupo 18. Gases nobles. Helio (He), neón (Ne), argón (Ar), criptón (Kr), xenón (Xe) y radón (Rn).

Del 3 al 12. Elementos de transición. Algunos ejemplos: cromo (Cr), hierro (Fe), níquel (Ni), cobre (Cu), cinc (Zn), plata (Ag), platino (Pt), oro (Au) y mercurio (Hg).

Un «problema» sin solución, aunque no tiene especial relevancia, es la posición del hidrógeno (H). Hay químicos que lo consideran dentro del grupo 1, metales alcalinos. Otros dicen que podría situarse en el grupo 17, con los

jueves, 23 de junio de 2011

Hipótesis de Planck.

Max Karl Ernest Ludwig Planck fue un físico alemán considerado como el fundador de la teoría cuántica.

En 1889, descubrió una constante fundamental, la denominada Constante de Planck, usada para calcular la energía de un fotón. Planck establece que la energía se radia en unidades pequeñas denominadas cuantos. La ley de Planck relaciona que la energía de cada cuanto es igual a la frecuencia de la radiación multiplicada por la Constante de Planck. Un año después descubrió la ley de radiación del calor, denominada Ley de Planck, que explica el espectro de emisión de un cuerpo negro. Esta ley se convirtió en una de las bases de la teoría cuántica, que emergió unos años más tarde con la colaboración de Albert Einstein y Niels Böhr.

Lo que postuló Planck al introducir su ley es que la única manera de obtener una fórmula experimentalmente correcta exigía la novedosa y atrevida suposición de que dicho intercambio de energía debía suceder de una manera discontinua, es decir, a través de la emisión y absorción de cantidades discretas de energía, que hoy denominamos “quantums” de radiación.


RESUMIENDO:

Según Planck, la energía emitida o captada por un cuerpo en forma de radiación electromagnética es siempre un múltiplo de la constante h, llamada posteriormente constante de Planck por la frecuencia v de la radiación.

e =nhv

h=6,62 10-34 J·s, constante de Planck

v=frecuencia de la radiación

A hv le llamó cuanto de energía. Que un cuanto sea más energético que otro dependerá de su frecuencia.

FORMAS DE REPRESENTAR MOLÉCULAS ORGÁNICAS.

En la química del carbono, es fácil encontrar diversos compuestos diferentes con la misma fórmula molecular. Para diferenciarlos, debemos s...